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Abstract
Estimating the operation of a MOSFET by heart is an
important skill for any engineer in digital integrated
circuit design. This report describes a method for ex-
tracting the model parameters for the Unified Model
from data simulated in a more robust and more in-
tricate model, Berkeley Short-channel IGFET Model
3 (BSIM3).

We simulated the DC response of an N-channel
enhancement-mode MOSFET with randomized pa-
rameters in Linear Technology spice (LTspice) with
the BSIM3 model. From the gathered data, we de-
rived the parameters necessary to model the transis-
tor’s behavior with the Unified Model. Additionally,
we considered some methods that are used in the
semiconductor industry to account for manufactur-
ing tolerances.

We discovered that the quadratic model is reason-
ably accurate as a first-order approximation over the
entire operating region except at the transition to ve-
locity saturation.

1. Introduction
In the era of personal computers, doing calculation
by hand may seem like an unnecessary skill. How-
ever, to understand the behavior of any system it
is important to be able to reason about that system
without needing the aid of a computer. Having the
skill of manual calculation also allows an engineer to
quickly evaluate a design in their head.

In order to do manual calculation, a model must
be chosen such that it is simple enough to apply yet
accurate enough to provide meaningful results. That
is to say, the results should match the real behavior of
a device.

A model that suits manual calculation of MOS-
FETs is the Unified Model (UM), also known as the
Quadratic Model (QM). The UM predicts the DC
characteristics of a MOSFET with a single quadratic
equation. This model requires several parameters
to be extracted from data before any calculation can
be done. This data was acquired by using BSIM3,
a more exhaustive model, in LTSpice. The MOSFET
that was simulated had a channel length L = 1.8µm
and a channel width of W = 180nm. Certain parame-
ters of the BSIM3 model were randomized in MatLab
with a seed value of 4911210. The rest of the param-
eters are taken from the Predictive Technology Model
website[4] The full parameter listing can be seen in
Appendix A.

The method of extracting the parameters is dis-
cussed, the results are evaluated by comparing the
the ID -VDS curves, and methods for mitigating pro-
cess variability in production is also discussed.

2. Theory
The QM models a MOSFET by Formula 1. Here, W
and L are the width and length of the modeled tran-
sistor and Vmi n is the minimum of VGS −VT , VDS and
VDS AT . VGS is the gate-to-source voltage and VDS is
the drain-to-source voltage. VT , k = k ′ · W

L , VDS AT ,
and λ are the parameters to be determined.

ID = W

L
k ′

(
(VGS −VT ) ·Vmi n − 1

2
V 2

mi n

)
· (1+λ ·VDS )

(1)
Since this is a quadratic formula it is relatively easy to
solve for an unknown by hand.

BSIM3 has a myriad of formulas to model the same
transistor with more accuracy. This model is part
of a simulation computer program called Simulation
Program with Integrated Circuit Emphasis (SPICE).
There exist multiple variations of the original Berke-
ley SPICE. These all use the same BSIM3 model but
may be extended with even more sophisticated mod-
els. This work only uses BSIM3, so which version of
SPICE is used is irrelevant.

3. Extraction Method
To use the QM four parameters must be determined:
VT , k, λ and VDS AT . We derive values for these pa-
rameters from measurements of the drain current at a
certain fixed gate-to-source and another fixed drain-
to-source voltage and a bulk-to-source voltage of 0 V.

3.1. Extracting VT

VT is an important parameter for describing the op-
eration of the transistor [6][2]. As such, much care
must be taken to find an appropriate method for ex-
tracting its value. One method is to linearly extrapo-
late

p
ID versus VGS [2, section 2.3]. Dobrescu (2000)

also argues that it is best to take the linearization at
the point of inflection, the point with the maximum
slope. The intersection between the linearization and
the horizontal axis would be taken as the value of VT .

It is also possible to use the same technique with
a ID versus VGS plot [2, section 2.1]. This method
produces a significantly different value for VT which
does not fit previously obtained values. The reason
is, according to our interpretation, that the part that
is extrapolated is not very linear when not taking the
square root. This justifies the square root technique.

From the square root method, different values of
VT can be obtained by varying VDS . This is not de-
sirable, but can be explained with the DIBL-effect [7,
section 3.3.3]. This effect reduces the apparent VT

when VDS is increased. Therefore, the maximum ap-
parent value found for VT is used as the real value.
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3.2. Extracting k
We will discuss two ways of determining k: using For-
mula 2 when Vmi n = VGS −VT or using Formula 3
when Vmi n = VDS . The use of Formula 2 might be
more compelling when the extraction of VT as men-
tioned in Section 3.1 has already been set up. This is
because the maximum value of VT relative to VDS oc-
curs at the inflection point where VDS =VGS −VT ; the
boundary point between the linear and saturation re-
gions. Here, Vmi n can be chosen as VGS −VT , and
combining this with Formula 1 and deriving as shown
in Appendix B.1 gives Formula 2 with the slope at the
inflection point as its only variable.

k = 2 ·
(
∂
p

ID

∂VGS

)2

(2)

The most significant limitation of Formula 2 is that
it can only be used in the saturation region, which
means the value of k obtained will be relatively high
such that the QM will not be accurate in the linear
region. To get a different, generally lower value of k,
Formula 3 can be used, which is obtained from dif-
ferentiating Formula 1 to VDS with Vmi n =VDS , at the
point VDS = 0.

k = ∂ID

∂VDS
· (VGS −VT )−1 (3)

The derivation of Formula 3 is in Appendix B.2. To
use Formula 3, a value of VGS , refferd to in this work
as VGS,k , must be chosen, and thus a single ID -VDS

curve, with which to determine k. This choice of
VGS,k determines around which VGS the QM will be
most accurate, so the choice can depend on the ap-
plication, but it is commonly chosen around 1.5 V.

As said before, determining k using Formula 3 gen-
erally results in a lower value for k than Formula 2.
This is because of an effect called surface scattering
[9], which can be explained as the charge carriers be-
ing pulled toward and colliding with the gate oxide
by high vertical electric field strength, caused by high
VGS . This reduces the mobility of the charge carri-
ers, and since k depends on the mobility it is also af-
fected. What this means is that one must use Formula
3 to determine k for a good modeling of the linear re-
gion and Formula 2 for the saturation region. How-
ever, as ID (relative to VDS ) becomes linear in the sat-
uration region and the slope in the saturation region
is proportional to λ, there is not much to be gained
by using Formula 2 to determine k for use in the sat-
uration region. Therefore we will use Formula 3 to
determine k, thus improving model accuracy in the
triode region.

3.3. Extracting λ
Lambda can be calculated from the slope of IDS ver-
sus VDS in the saturation region: λ= ∂ID

∂VDS
.

When one linearly extrapolates ID versus VDS from
the saturation region, this line intersects the VDS -axis
at a voltage called VE , the early voltage. From assum-
ing IDS = 0 in Formula 1, it follows that VE = −1

λ The
early voltage is independent of VGS , because it is the
axis of all extrapolated lines. In other words, if VGS

is larger the slope of the line is larger, but the offset
is also larger. These two effects should cancel each
other out according to the QM.

In reality, VE and therefore λ are dependent of VGS .
Since we are modelling digital circuits, it is best if our
model is accurate when either VGS =VDD , or VGS = 0.

3.4. Extracting VDS AT
It is difficult to determine VDS AT mathematically or
algorithmically. However, at this point all other es-
sential parameters for the Unified Model have been
determined. It is therefore possible to determine
VDS AT by inspection. That is, trying different values
to get the best overall fit.

4. Extraction Results
The extracted parameter values are in Table 1. A com-
parison between the BSIM3 simulation and the Uni-
fied Model with our extracted parameters is shown in
Figure 1.

The QM roughly follows the BSIM3 model, which
is to be expected. The two models diverge signifi-
cantly around the transition between the linear and
velocity saturation regions. The curve of the QM has
a sharp bend at the point where VDS −VT becomes
greater than VDS AT . The BSIM3 curve is continuous
in this transition point. Of course, BSIM3 is more ac-
curate; this is clearly a limitation of the QM. This is
because velocity saturation is very roughly modeled
in the QM, which makes it impossible to have a con-
tinuous curve in the transition point.

One could ask: is velocity saturation occurring at
all, given that including velocity saturation makes the
outcome of the QM and BSIM3 diverge around the
transition point?

Answering this question does not have to be
complicated: if velocity saturation is not included
(VDS AT ≥ VDD ), the parameters in Table 1 in combi-
nation with the QM do not produce a set of ID -VDS

curves resembling those of BSIM3 for any value of
k. Furthermore, it is known that velocity saturation
does occur in devices with a drawn length of 180 nm,
such as the one this work is about [3]. In conclusion,
the discrepancy around the transition between linear
mode and velocity saturation mode is a limitation of
the QM model and not an error of the determined pa-
rameters themselves.

The Unified Model in Figure 1 has a curve in sat-
uration mode that best matches with the VGS = 1.5V
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curve. This makes sense, because k was determined
from the data set where VGS is equal to 1.5 V. For ana-
lyzing digital circuits, it is important to have a model
that works well for the case where the supply voltages
are applied. One should consider a different set of pa-
rameters when analyzing analog circuits.

VT 0.373 V
k 2.339 mA/V2

λ 0.185 V−1

VDS AT 0.39 V

Table 1: Extracted Unified Model Parameters

4.1. Further optimization
The parameters determined in Section 4 produce a
fairly good result when compared to BSIM3. It is pos-
sible to adjust VGS,k and VDS AT in order to decrease
the deviation from BSIM3 in the saturation region,
but this has as a greater deviation in the triode region
as a trade-off.

This tweaking is done by decreasing VGS,k which
results in an increase in k, which scales ID linearly.
At the same time, decreasing VDS AT decreases the
quadratic increase of ID with VGS . This way, the spac-
ing between the ID curves in the saturation region is
slightly decreased, placing them closer to the BSIM3
curves. Table 2 contains the parameters after manual
optimization. Figure 2 shows the result of the opti-
mization: closer resemblance in the saturation region
but greater deviation in the triode region.

VT 0.373 V
k 2.968 mA/V2

λ 0.185 V−1

VDS AT 0.29 V

Table 2: Parameters after manual optimization
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Figure 1: Comparison between BSIM3 and UM with parameters from Table 1

Figure 2: Comparison between BSIM3 and UM with optimized parameters from Table 2
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5. Accounting for Variability
Modern ICs are designed with feature sizes well be-
low the 180 nm scale presented in this work. These
ICs have feature sizes of less than 50 nm. At this scale,
statistical variability becomes significant. The vari-
ability affects the yield and performance of ICs. There
is a distinction between two types of variability: ran-
dom and systematic. Both of these have an effect on
the parameters of a MOSFET in any IC with sub 50 nm
sizes [5].

When designing with small MOSFETs, an engineer
must take this variability into account. This is done
with the aid of a computer simulator. There ex-
ist multiple types of simulators with a trade-off be-
tween speed and accuracy. Two examples are Sta-
tistical Compact Models (SCMs) and atomistic mod-
els (AMs). An SCM uses analytic equations based on
empirical data to model variability and an AM uses
more universal physics-based equations [5]. An SCM
can model the standard deviation of propagation de-
lay with about 4% accuracy if the atomistic model is
assumed to be perfect.

When using any statistical simulator, variations
must first be characterized. This is done with a Char-
acterisation Array (CA) [8]. The CA contains a grid of
transistors which can each be measured by probing
the pins of the CA IC. From this, data is extracted as a
basis for statistical computing.

SCMs can be used inside a design flow [1]. This
allows a designer to consider the effect of variation
while designing an IC and make a better informed
choice. For example, when a certain logical block’s
performance affects the throughput of the entire cir-
cuit, it makes sense to ensure that block will have low
variability at the cost of area. Where tolerances are
larger, the parts can be optimized for size instead.

6. Conclusion
In this work, the parameters of a BSIM3-simulated
180 nm transistor were extracted for use in the Uni-
versal Model. The method for extracting these pa-
rameters were discussed and the two models were
compared. Finally, the methods used to account for
variability in current IC design were discussed.

The Universal Model and BSIM3 have been found
to differ significantly in the region where velocity sat-
uration begins, but otherwise the Universal Model
has been found to be a reasonable one for a first order
approximation.
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A. BSIM3 Parameters

*$

* Predict ive Technology Model Beta Version

* 180nm NMOS SPICE Parametersv ( normal one )

* BSIM3 Version 3.1

* From http : / /ptm . asu . edu/ l a t e s t . html , 2018−09

* Cao , Yu , et a l . "New paradigm of predict ive MOSFET and interconnect

* modeling for ear ly c i r c u i t simulation . " Custom Integrated C i r c u i t s

* Conference , 2000. CICC . Proceedings of the IEEE 2000. IEEE , 2000

*
* Modified for TU Delft EE2C11 by NvdM, 2018−09

* removed Tref , binflag , php parameters

* BSIM3v3

* PSpice and LTSpice

* PSpice : l e v e l = 7

* LTSpice : l e v e l = 8

*
* Modified by Daniel S t i j n s , 2019−10

* randomized u0 , Tox , Lint

. model nenh NMOS
+Level = 8

+Lint = 4.0438e−08 Tox = 4.41702e−09
+Vth0 = 0.3999 Rdsw = 250

+lmin =1.8e−7 lmax=1.8e−7 wmin=1.8e−7 wmax=1.0e−4 version =3.1
+Xj= 6.0000000E−08 Nch= 5.9500000E+17
+ l l n = 1.0000000 lwn= 1.0000000 wln= 0.00
+wwn= 0.00 l l = 0.00
+lw= 0.00 lwl= 0.00 wint= 0.00
+wl= 0.00 ww= 0.00 wwl= 0.00
+Mobmod= 1 binunit= 2 x l = 0
+xw= 0
+Dwg= 0.00 Dwb= 0.00

+K1= 0.5613000 K2= 1.0000000E−02
+K3= 0.00 Dvt0= 8.0000000 Dvt1= 0.7500000
+Dvt2= 8.0000000E−03 Dvt0w= 0.00 Dvt1w= 0.00
+Dvt2w= 0.00 Nlx= 1.6500000E−07 W0= 0.00
+K3b= 0.00 Ngate= 5.0000000E+20

+Vsat= 1.3800000E+05 Ua= −7.0000000E−10 Ub= 3.5000000E−18
+Uc= −5.2500000E−11 Prwb= 0.00
+Prwg= 0.00 Wr= 1.0000000 U0= 3.5951000E−02
+A0= 1.1000000 Keta= 4.0000000E−02 A1= 0.00
+A2= 1.0000000 Ags= −1.0000000E−02 B0= 0.00
+B1= 0.00

+Voff= −0.12350000 NFactor= 0.9000000 Cit= 0.00
+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00
+Eta0= 0.2200000 Etab= 0.00 Dsub= 0.8000000

+Pclm= 5.0000000E−02 Pdiblc1= 1.2000000E−02 Pdiblc2= 7.5000000E−03
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+Pdiblcb= −1.3500000E−02 Drout= 1.7999999E−02 Pscbe1= 8.6600000E+08
+Pscbe2= 1.0000000E−20 Pvag= −0.2800000 Delta= 1.0000000E−02
+Alpha0= 0.00 Beta0= 30.0000000

+kt1= −0.3700000 kt2= −4.0000000E−02 At= 5.5000000E+04
+Ute= −1.4800000 Ua1= 9.5829000E−10 Ub1= −3.3473000E−19
+Uc1= 0.00 Kt1l= 4.0000000E−09 Prt= 0.00

+Cj= 0.00365 Mj= 0.54 Pb= 0.982
+Cjsw= 7.9E−10 Mjsw= 0.31
+Cta= 0 Ctp= 0 Pta= 0
+Ptp= 0 JS =1.50E−08 JSW=2.50E−13
+N=1.0 X t i =3.0 Cgdo=2.786E−10
+Cgso=2.786E−10 Cgbo=0.0E+00 Capmod= 2
+NQSMOD= 0 Elm= 5 Xpart= 1
+Cgsl= 1.6E−10 Cgdl= 1.6E−10 Ckappa= 2.886
+Cf= 1.069e−10 Clc= 0.0000001 Cle= 0.6
+Dlc= 4E−08 Dwc= 0 Vfbcv= −1

*
*$

B. Formula Derivation
B.1. Formula 2

ID = 1

2
k(VGS −VT )2

√
ID =

√
1

2
k · (VGS −VT )

∂
p

ID

∂VGS
=

√
1

2
k

k = 2 ·
(
∂
p

ID

∂VGS

)2

B.2. Formula 3

ID = k

(
(VGS −VT )VDS − 1

2
V 2

DS

)
∂ID

∂VDS
= k(VGS −VT )−VDS

Assume VDS = 0

k = ∂ID

∂VDS
· (VGS −VT )−1
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